Столярные, печные, малярные работы
Изготовление лестниц и оград


Бытовые печи, камины и водонагреватели - Ю. П. Соснин, Е. Н. Бухаркин

Сгорание отдельной капли топлива

Сгорание отдельной капли топлива можно представить следующим образом: в результате подогрева капля начинает испаряться, пары топлива, окружающие каплю, диффундируют в окружающую среду, происходит взаимопроникание частиц воздуха и топлива. Капля, движущаяся относительно окружающей среды, будет иметь в передней части и сбоку более тонкую, а сзади — удлиненную зону горения.

При достаточной температуре смесь паров топлива и кислорода воздуха начинает активно реагировать, происходит процесс диффузионного сгорания газовой фазы топлива. Скорость химической реакции очень велика, скорость же физических процессов (испарение капли, смешение паров топлива с окислителем, подогрев смеси) значительно меньше, и очевидно эти физические процессы определяют скорость сгорания.

В основном время сгорания зависит от времени испарения и времени диффузии молекул. Ламинарная диффузия определяет спокойный, сравнительно медленный процесс, турбулентная — ускоренный процесс. С уменьшением размера капель уменьшается время их испарения. Испаряемость топлива, его плотность, состав и условия теплообмена с окружающей средой также влияют на скорость горения.

Горение жидкого топлива состоит из процессов его распыления, смешения с воздухом (окислителем), испарения и реакции соединения с окислителем.

Величина поверхности частиц топлива, омываемых воздухом и вступающих в реакцию с кислородом, имеет решающее значение для интенсивного и полного сгорания топлива. Величина активно реагирующей поверхности топлива определяется степенью и качеством его распыления, а также качеством смешения его с воздухом. Однородное и тонкое распыление топлива является обязательным и важным фактором подготовки топлива к сжиганию,

Распыление топлива — процесс дробления струи на мелкие капли. Для распыления струи жидкого топлива необходимо преодолеть силы сцепления   и поверхностного   натяжения.

Для создания развитой поверхности топливных струй применяются следующие методы: распыление топлива сжатым воздухом, паром или дутьевым воздухом от вентилятора; распыление топливной струи за счет действия центробежных сил в механических форсунках; создание тонкой конусовидной пленки вращающимся распылителем в ротационных форсунках; газификация топлива; распределение топлива тонкой пленкой на поверхностях корпуса горелки.

Наиболее совершенное распыление достигается сжатым воздухом или паром, однако для этого требуется компрессор или паровой котел. При распылении топлива дутьевым воздухом также получается хорошее качество распыления, однако здесь необходим вентилятор высокого или среднего давления (не менее 3000—4000 Па). Недостатком метода распыления с помощью форсунок является наличие вращающихся механизмов с довольно сложной кинематической передачей в механических форсунках, а в ротационных — еще требуется топливный насос высокого давления, а также система фильтрации топлива.

Все перечисленные способы распыления топлива применяются при расходах топлива не ниже 5—10 кг/ч, что существенно превышает потребность в топливе бытовых печей. По этим причинам для установки в бытовых отопительных и отопительно-варочных печах могут быть рекомендованы только методы газификации и распределения топлива тонкой пленкой в корпусе горелки. При этом требуется минимальное количество вспомогательного оборудования, причем расход топлива может быть минимальным.

Для того чтобы обеспечить эффективное протекание процесса горения жидкого топлива, необходимо правильно проводить его теоретический расчет.

При расчетах горения топлива требуется определять следующие величины: количество воздуха, теоретически необходимого для горения; количество образующихся продуктов сгорания; коэффициент избытка воздуха в продуктах сгорания; теоретическую температуру горения.

Точный расчет этих величин производится по данным элементарного состава топлива на основе количественных соотношений реакций горения. Для различных марок жидкого топлива, имеющего достаточно стабильный элементарный состав, выведены упрощенные формулы для расчета процессов горения в следующем виде.

Зависимость теплоемкости и объемов газов от величины избытка воздуха показана на  83. Величины сг и св можно определить по графику на  83, а.

Определение величины коэффициента избытка воздуха может быть произведено по данным элементарного анализа продуктов сгорания по углекислоте и кислороду.

Согласно выведенным зависимостям, основные характеристики продуктов сгорания жидкого топлива определяются величиной а. На  83, б показаны зависимости объемов воздуха, необходимого для горения продуктов сгорания и температуры сгорания от величины и.

Статья размещена в рубрике: Бытовые печи